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ABSTRACT

N\

“* This paper considers the rescheduling of operations with release dates and multiple resources
when disruptions prevent the use of a preplanned schedule. The overall strategy is to follow the
preschedule until a disruption occurs. After a disruption, part of the schedule is reconstructed
to matchup with the preschedule at some future time. Conditions are given for the optimality
of this approach. A practical implementation is compared with the alternatives of preplanned
static scheduling and myopic dynamic scheduling. A set of practical test problems demonstrates
the advantages of the matchup approach. We also explore the solution of the matchup scheduling

problem and show the advantages of an integer programming approach for allocating resources to
jobs.:

Keywords: scheduling, integer programming, unreliable machines. <;-

1. Introduction

Much of the research in scheduling considers environments with one or more of the follow-
ing assumptions: a single required resource (a machine), identical resources, all jobs available at
the same fixed time, or known and fixed future conditions (see, e.g., Graves [1981] and Rinnooy
Kan[1976]). These conditions are seldom true in actual production facilities. In this paper we
consider a method for adapting a preplanned schedule to a changing scheduling environment. The

problem includes multiple resources with some degree of processing compatibility, varying times

! The work of James Bean was supported in part by NSF Grants ECS-8409682 and ECS-8700836
to The University of Michigan

¥ The work of John Birge was supported in part by the Office of Naval Research under Grant
ONR-N00014-86-K-0628 to The University of Michigan and by the National Research Council
under a Research Associateship at the Naval Postgraduate School
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e
- at which jobs are available and costs associated with not completing jobs by a due date. This
s‘;:: situation models two actual manufacturing facilities in the automobile industry that are used in
E:':. testing the approach.

::r' ‘ Few previous studies have considered the possibility for disruptions such as machine break-
':‘:2 ‘ downs. When disruptions are considered (see Glazebrook [1984], e.g.), the models have limiting
;::" conditions. Models without disruptions include using a common deadline (Root [1965]). identical
g;:: processors (Dogramaci and Surkis [1979]), and unit processing times (Blazewicz {1979]). The ob-
e jectives studied include minimizing maximum completion time (Bratley, et al [1975], Nichols. et
' N al. [1978]) or maximum tardiness (Nunnikhoven and Emmons {1977]).
'.:': We model a general multiple resources system with disruptions and assume that the presched-
: ule can be followed if no disruptions occur. The scheduling strategy in this paper follows this
! i previously planned schedule until a disruption occurs and then reschedules part of the preschedule
:ij to accomodate the disruption. We reschedule to match up with the preschedule at some time in
! "ﬁ the future, that is, to reschedule so that the completed jobs and inventory positions are identical to
"" . what would have occurred in the preschedule. Were the problem formulated as a dynamic program.
‘: .;: the state reached by the revised schedule is the same as that reached by the original schedule.

b ﬁ-ﬁ: The matchup method is similar to the approaches in Chang, et al. [1984], Donath and Graves
j‘, (1985] and Filip, et al. [1983], in that existing schedules are revised at disruptions. Our matchup
:)’ method differs from these approaches in that it seeks to matchup with the preschedule.

Nj:' We use a set of real problems to demonstrate the effectiveness of this procedure in comparison
." with pushing back a preplanned schedule and fully dynamic scheduling. We also present heuristic
e procedures for solving the matchup problem and compare them on the problem set.

2 The general matchup method is described in Section 2, where we show the optimality of
'I'.;': the matchup approach for sufficiently spaced disruptions. Techniques for sequencing jobs on one
resource appear in Section 3. Methods for allocating jobs to the resources appear in Section 4.
— Section 5 describes the experiments conducted on our practical test set. Section 6 summarizes our
I‘ -E: results and conclusions.

::5" 2. Matchup Scheduling Strategy

T, . In the extremes, scheduling systems may be run continuoucly, as in the dynamic algorithm .f
:EE;: Baker and Kanet [1983] and Morton and Rachamadugu [1983], or very infrequently as in the st.':c
"EE: algorithms of Lageweg, et al. {1977] and Bratley, et al. The matchup method fits between 1}
)
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common approaches. It responds to disruptions as in a dyuamic algorithm, yet considers future
i information as in a static algorithm. Under certain conditions the matchup approach leads to an
' optimal schedule following a disruption.
8
" The theoretical basis for the matchup strategy is an extension of economic turnpike results
h (see McKenzie (1976] ). In Bean and Birge [1985], it was shown that a scheduling model could fit
' the framework of McKenzie's model for the asymptotic stability of optimal solutions. We extend
; these results below by providing a general scheduling model that yields asymptotic stability results
' under fairly general conditions.
: Most scheduling models assume a finite number of jobs in the system. However, in most real
; problems, as jobs are processed other jobs are introduced. Failure to recognize the ongoing nature
ke of the problem constitutes a significant simplification. To model the indefinite time horizon of
realistic scheduling problems we consider a discrete time infinite horizon optimization problem. At
::: ‘ timet =0,1,..., we are in state z; € R". In the scheduling framework a state includes information
"p: on the status of each job, e.g. , what fraction has been completed and what resources are assigned.
!‘! . The sequence of states over time is £ € £*. The decision at time ¢ is to choose a state r,4 to
i enter at time ¢t + 1 with cost fi(zs,T¢+1). The objective is to find
i
R o
" :ientt;,gft(zhxt+l)v (P)
J
: where each f, is a proper convex function of z, and z,4;.
oy We assume that each component i of z; corresponds to production of part :. There are R
types of resources potentially required to produce each part. Each resource set r has .M(r) groups.
Gl,... ,Gl'mr) of identical resources. Part z requires a resource in group 7o) forr=1,....R. for
.h processing.
; Each part 7 also has an associated processing requirement p(i), an earliness cost weight, u(2} >
S 0. and a lateness cost weight, w(z) > 0. There is also a sequence of release dates, {r(z,1).r(z.2)....}.
; early dates, {e(,1),e(2,2),...}, and due dates, {d(i,1),d(¢,2),...}, such that r(:,k) < e(1. k) <
N d(:. k) for each k = 1,2,.... The objective function f has two components, f, and é,. The f,
component is separable in 1 = 1,2,...,n. It includes a lateness penalty if the kth shipment of a
; part is not completed by the kth due date. It includes an earliness penalty (holding cost) if the
:: kth shipment of a part is completed before the kth early date. The é, component forces feasibility
3
o
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of processing with respect to the finite resources. The objective function is then
K no_ R
fo fe(ze, Teqr) = Zf;'(-‘rt(i)aztﬂ(i)) + Zér(znl‘:ﬂ),
K =1 r=]
4
k where d(t,1 - 1) <t < d(2,1), and
3 ((—w;(1), i —1[g=aqi,n)P(2) < Te41(2) = 20(2) < Lo rgty) — L=
) .’L’g(i) <0
% . ' Le<enuil@e(d) = p(1)), i =Lpemdqin)P(i) S Te41(d) = 20(2) < Loz et} — Li=ai
i fe(zo(2), Tesr(2)) = ¢ ze(2) > p(i) _
0, if ~1ema(in)P(3) S Ter1(2) = 2e(2) < Lz raty — Lie=a
; 0 < z4(2) < p(2)
K \ o0, otherwise
j: Note that f,‘ is a piecewise, linear convex function (depending on t) of z,(z) for each feasible
§ Te+1(2) and that the set of feasible z,41(7) is convex. Hence f,‘ is convex. Note also that f,‘ forces
':, a shipment on each due date (possibly resulting in negative inventory) so that feasible z, remain
\J
v bounded. It represents incremental penalties for tardiness and earliness. The resource constraints
p
L are represented by
N .
k|
)
.
' . . . .
«::' §.(ZerTeny) = {0, if ZL! lg(im=)(Te+1 — 2¢) + P(1)(e=aiy) S IG5l =100 M(ry
" 1, otherwise
, These constraints limit the number of resources used of each type to the cardinality of those sets.
L)
9 Since each of these indicator functions is convex, f; is convex.
[
! Problem P is then a convex optimization problem. The objective may not, however. be finite
for any z € £°°. We avoid this difficulty by defining a policy z* = {zo,z},...} as weakly optimal. as
‘ in McKenzie, if z* is not overtaken by any other policy, i.e., if there does not exist z! = {z¢.r}....}
3
4 such that
* . T
S limsup Z(fa(zi»dﬂ) = fulzg,zi41)) < —¢ (L
T—0C t=(
:: for some ¢ > 0. The following well known technique gives us a finite valued problem. By the
)
:: construction of f; we know that the objective terms are bounded for each feasible (r,.r;,).We
:f can formulate an equivalent problem by subtracting the period t value of the optimal solution from
. all f, in each period. This altered problem has the same optimal solutions as the original problem
K and is finitely valued for any weakly optimal policy. Therefore, we can assume without loss of
. generality that P has a finite optimum obtained by z € £,

4
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To obtain results on the stability of solutions, we first present conditions for a supporting price
system. For this development, we define the set of feasible states at time t, X, as all states which

can be continued over the infinite horizon at finite cost.

The attainable states at t are
Ye = {z¢|fi-1(2¢-1,7¢) < 00 for some z,_;}.

A resource group, G;-', is 1dle at t if no processing occurs for parts requiring GJ', ie,if ryp1(2) =
Te(2) — 1[t=d(i,l)]P(i) for all g(z,7) = ;.

The next theorem expands on McKenzie’s results for price supports by using specific properties
of the objective functions f;.

Theorem 1: If z* is optimal in (P) and any of the following hold,

(a) (interiority) zg € ri(Xo) (7t is relative interior) and int( X, NY;) # 0 relative to aff(.X,UY;):
or,

(b) (slack time) for any ¢, z; € X(NY, there exists {z¢41,...}, F{(z¢) =inf > oo, fr(zr 2r41). T
t such that the common resource groups required for any set of parts are idle at T or

(¢) (asymptotic penalty free schedule) for any t,z, € X;NYy, there exists T > ¢, {z}.z},,....}

such that fy(z¢, 2l ) + Zfstfr(rf.,z‘,“) < oo, fr(zl,zl ) =0forall7 >T;or

(d) (decreasing fixed matchup cost) there exists a feasible solution to P, z' = {z¢.riy,....}

such that for any t,z, € X NY, Tx,K =1,2,..., Tk < Tk41, such that

Tx-1
Z HZerTegr) + fo(ITx’ziI‘x-O-l) < oo

r=t
and img —~oc fTy (ZTx» 2Ty 41) = 05
then there exists p;,t = 0,1,... such that
(i) F¥{z7) — ptz; < F'(z¢) — piz forall 2, € X, t =1,2,...
(i) flzg,Top1) —PiZi +Pi41Te41 < filTe, Ter1) —PTe+ Pie1 Tes1, for all (z¢, £esy) such that
fi(ze,2041) < 00
Proof: See Appendix.
The asymptotic stability of solutions follows again from the structure of the objective function.

The following theorem states that optimal solutions from varying initial conditions asymptotically

approach each other. That is, the eventually optimal path is insensitive to the initial conditions.




Let Z} be the set of solutions (z¢, 2¢+1) such that
fl@g,2i41) — PeTy + PesaTegr = fil2e 2e41) = Pr2e + Py Sea1
Our result is that all optimal solutions approach Z; regardless of initial condition.

Theorem 2: Let z* be optimal for (P) with initial condition z¢, price support p* and facets Z;
defined as above. Let z’ be optimal in (P) with initial condition zj and price supports p’. Then,

for any € > 0, there exists T < oo, such that, for all t > T,

[2V]

(; :in,f)eZ’ (e Te41) = (26201l S & (:
trét+ ¢

Proof: See Appendix

Beyond the asymptotic approach to a turnpike solution, we can also show that matchup to
a turnpike occurs as quickly as possible if the only objective is to minimize tardiness as defined

above. This result further justifies our use of the matchup approach.

Theorem 3: Assume in Problem (P) that u; = 0 for all i and that z* is an optimal solution
given z§. Let zy < zg be an alternative initial state. If there exists a feasible solution I such that
%o =z} and 7, = z} for some ¢ < 0o, then there exists an optimal solution z' with initial condition
rq such that zy = z7.

Proof: See Appendix.

The impact of this result is that the optimal schedule beginning at the disruption state matches
up with an optimal preschedule as soon as possible with finite cost. Two questions arise: how fast

can this matching up take place, and what happens if additional disruptions occur in the system?

The answer to the first is dependent on system parameters. For example, a system with well
distributed ample slack resources can matchup quickly. Note that this observation leads to the

important question of how the system and preschedule can be designed to make rescheduling easier.

The second question results in an assumption that disruptions are spaced far enough apart
that match up is possible between disruptions. This situation occurs in the real test problems
studied below. If this assumption is not valid, the system is so disrupted that no preschedule will

be useful and full dynamic scheduling is likely near optimal.

As an implementation issue, we wish to use this matchup philosophy to reschedule a system

upon disruption. We need to determine the matchup time and tle optimal schedule from the

6
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:::;. disruption time to the matchup time. In practice, neither is a simple task. Below we describe a
heuristic born of the matchup philosophy and test it against real problems from the automotive
vy
;\‘ industry.
‘-’ We define a job as production unit (e.g., part) with a single due date and release date that
:"') cannot be subdivided for processing. A lot is a collection of jobs from the same part type that
[t does not require setups between jobs. A tool is a resource required in addition to a machine for
1y
f.::. processing a job.
X
:::!{: Assume that a preschedule has been constructed and implemented. When a disruption occurs
et we seek to reschedule jobs on machines and tools to minimize total weighted tardiness such that
“yal
X no release dates are violated.
hrel
i Since this problem is NP hard (even rescheduling a single machine subject to release dates to
n') .' g g
L e e . . . .. .
¢ - minimize total tardiness is unary NP hard, Graham, et. al. [1979]), we use a heuristic algorithm.
;‘r We first attempt to match up on individual machines. If this is unsuccessful we reallocate lots
'2 . across machines and resequence jobs on individual machines. This allocation and sequencing step
! ”’ is similar to that in Dogramaci and Surkis. In the algorithm given below note that T1, Tax, DT
v ) and EPS are user defined parameters.
W
5 3 Matchup Scheduling Algorithm (MUSA)
A
j_'}’! Step 0 : For each disrupted machine, set a minimum match-up time, T1. Let T = T1. Go to Step 1.
J
‘.;:'i Step I : On each disrupted machine, resequence all jobs scheduled before T. Evaluate the schedule
:.:'::‘ COST on each disrupted machine. If COST < EPS on all machines, STOP. Else, go to Step
Yl
R >
=y Step 2 : Let T=T + DT. If T > Tpax, go to Step 3. Else, go to Step 1.
E3Y
A
::?::. Step 9 : Expand the set of machines to be rescheduled to include all machines that share job com-
:E;::. patibilities with the current set of disrupted machines. Reallocate lots across these machines.
DO
i Go to Step 0.
~.-.
B
rﬁz The procedures used for the allocation and sequencing steps are described below and include
o
'ﬂv':‘ the allocation of a finite set of tools. The following sections describe the alternatives implement|
e for these procedures.
Ry ,._.
Y‘. . - . .
> ‘ 3. Single Machine Sequencing
YA
A
K+ 7
o ‘
K
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In Step 1, MUSA heuristically reschedules jobs on a single disrupted machine. This method

e must run quickly due to the real time environment. The goal of the procedure is to minimize
; the total cost for late processing of the jobs where each job is started no earlier than its release
:,"f:; date. To increase scheduling flexibility, lots are broken into jobs. The overall objective is to find a
.“3 sequence of start times to minimize the sum of setup and tardiness costs without violating release
N date or tool availability constraints.
5.\ The heuristic calculates six feasible schedules based on different ordering rules and chooses
b that with least cost. The ordering rules are 1) a shortest processing time ordering (SPT). 2) an
_::." earliest due date ordering (EDD), 3) a modified due date ordering (MDD), 4) a priority index
?@5 ordering (API), 5) a ratio rule and 6) the ordering based upon the given sequence. The MDD
io. 2 rule was taken from the heuristic developed by Baker and Bertrand [1982]. The API rule was
- taken from the heuristic developed by Morton and Rackamadugu. The ratio rule is based on a
'Ef:' comparison of the remaining processing time of a job to the length of time available until the job is
‘-\;: ’ due. The given sequence ordering rule yields a pushback of the schedule in use when a disruption
:"‘ w! occurs.
\";‘;' For details on the implementation of the single machine sequencing heuristic see Bean. Birge.
:’}‘ i Mittenthal and Noon [1986].
o
J 4. Multimachine Lot Reassignment
T
:‘:;,; If the best single machine solution results in excessive overtime or premium freight charges,
‘ES": the multimachine lot reassignment program is used to redistribute lot to machine assignments.
A

The focus of the reassignment problem is to determine a feasible lot schedule across several ma-

chines. The multimachine reassignment uses lots for rescheduling in order to keep the problem

N f size manageable and reduce additional setups. We examined two approaches for reassignment: a

1 »

o multiple choice integer program (MCIP) formulation solved using the technique of Bean [1984].
[

B and a priority rule dynamic assignment heuristic.

[ '\;.

' ¥ The reassignment procedure can shift lots across machines to create a feasible multimachine

) \

k ~y schedule without additional setups. The single machine resequencing algorithm can then be applied

DO to order jobs to achieve further penalty reductions.

A%

Y .

,:::: 4.1 Integer Programming Approach

4

:::D: ' The multiple choice, zero one program has decision variables r,,, which equal 1 if lot i is

A
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assigned to machine ; and equal 0 otherwise. If lot ¢ can be run on some subset of the machines.
M;, with cardinality n, then n variables are created for lot i. To ensure that lot ¢ is scheduled on

exactly one machine, the logical constraint

E ;=1 (3)

JEM;

is used. The model also adds machine utilization constraints to ensure that the scheduled processing

time does not exceed the available processing time. These constraints are written
> pijzi; < Hj, (4}
i

where p;; is the processing time of lot ¢ on machine j and H; is the available processing time on

machine j.

Additional constraints for feasibility of the lot to machine assignments are needed to prevent
the assignment of more than one lot to one machine simultaneously and to prevent the use of
a single tool on two machines simultaneously. A lot’s window is the interval between its release
date and due date. Ideally, we would like to allow any placement within this window. For the
integer programming approach, however, the resulting formulation is too complicated to solve in
real time. To simplify this formulation placements within the window were discretized. One or
more possible placements are determined for each lot to machine combination. The formulation
is then altered so that z;; = 1 if lot ¢ is placed in position j (which has an associated machine).
This increases the number of variables, but the structure of the MCIP is retained allowing efficient
solution. One approach allows three placements, justified left, centered, or justified right. The

other fixes placements to avoid conflicts. For details see Bean, Birge, Mittenthal and Noon.

Given start times, S;, and finish times, F;, for all potential lot placements, constraints are
created to avoid the assignment of substantially overlapping lots to the same machine. Some overlap
is allowable as it can be resolved later by single machine sequencing or overtime. The allowable
overlap is denoted, RELAX. This relaxation helps compensate for modeling the continuous lot
start/finish by discrete assignments. Constraints are added such that on machine k. if F, >
(S, + RELAX) then

Tik+ ik <1, (3].

The final set of constraints prevents the simultaneous scheduling of two lots which use the

same tool. If lot : on machine ; and lot k on machine [ use the same tool and F, > S; and Fy > S

i

]
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Tij+zn S 1. (6]

Constraints (3),(4),(5), and (6) provide the basis for the multimachine reassignment program.
With this foundation, the problem’s objective can take on a number of forms. We tested two
alternatives: minimize the number of lot to machine assignment changes, and maximize the sum
of squared processing times scheduled. A weighted combination of these objectives produced the

best results.

Other considerations incorporated in the program include constraints on machine utilization to
balance machine workload and variable machine production rates. Other possible additions include
constraints on manpower requirements for discrete intervals to inhibit manpower imbalance, and

adherence to precedence requirements.

4.2 Priority Rule Approach

An alternative approach to reassigning lots to machines via the MCIP solution is to use a
priority rule strategy. The alternative we describe is similar to the approach in Dogramaci and
Surkis and to that of the single machine resequencing heuristic. Both develop initial schedules
based on a number of different rules and then select one. The heuristic develops an initial lot
sequence over the machine group and submits them one at a time for resequencing to the single
machine heuristic. A description of this heuristic algorithm is given in Bean, Birge, Mittenthal,

and Noon.

5. Experimental Results

The matchup scheduling algorithm (MTUSA) including the alternatives for lot allocation and
job sequencing was coded in FORTRAN and implemented on an IBM 4381 computer. The program
was applied to a set of problems from an automotive manufacturer. The goal of the comparisons
on this data set was to determine the value of the matchup approach relative to the simple static
and dynamic approaches, to evaluate the use of the MCIP allocation scheme relative to priority

rules and to determine the relative values of the individual sequencing rules.

The problem set consisted of eight disruption scenarios from a facility with two machines. and
five disruption scenarios from a facility with ten machines. Data for Facility 1 included 58 lots (250
jobs) scheduled over two fully compatible machines with an average utilization of 76%. Facility 2

consisted of 25 lots (293 jobs) scheduled over ten partially compatible machines with an average
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utilization of 46%. The disruptions were chosen to represent common difficulties which render a
preschedule infeasible: machine breakdowns, tool unavailabilities, release or due date changes. and
order quantity increases. The preschedules were developed by the manufacturer and contained
some unresolvable tardiness before the disruptions were added. This was due to earlier disruptions
that forced ready times plus processing times to be greater than due dates. This inherent tardiness
was a lower bound on the total tardiness. Tables la and 1b identify the type of disruption and

gives the inherent tardiness lower bounds.

Parameters were chosen to reflect operating conditions in the facilities. The solution horizons
generally included about 70 percent of the lots and were chosen so that the cumulative idle time
was at least twice the average lot processing time. The MCIP formulation initially allows no
overlap (RELAX = 0) among lot/machine assignments. If no feasible integer solution can be

found, RELAX is successively increased until enough constraints are relaxed that a solution can
be found.

Four strategies for rescheduling were evaluated to illustrate the nature of the matchup prob-
lem. Strategy 1 gives a static solution. When a disruption occurs, the machine assignments and
job sequences stay the same, only the job start and finish times are shifted to accommodate the
disruption. Strategy 2 gives a fully dynamic myopic solution using the myopic priority rule heuris-
tic. For this strategy the reassignment heuristic wa- used to reschedule lots according to one of

three selection rules: EDD, MDD and LWS. The last rule orders lots based on least slack time in

its window.

Strategy 3 considers only partial look ahead. For this strategy, the multimachine reassignment
problem was modeled as an MCIP. The preschedule lot/machine assignments and starting times.
however, were excluded from the formulation. Rather than dynamically scheduling forward througch
time, as in the priority rule heuristic, this approach solves the problem over the matchup horizon
and provides some degree of “look ahead” when considering the impact of scheduling a lot. After
the MCIP determines the multimachine lot schedule, the single machine resequencer is used to

obtain further penalty reductions.

Strategy 4 represents full matchup rescheduling using the MCIP with the preschedule job
assignments included in the formulation. This strategy displays the s.rength of combining the look
ahead aspects of the MCIP with the option of returning to the preschedule when it is advantageous
to do so. After the MCIP determines the multimachine lot schedule, the single machine resequencer

is used as in the previous strategy.
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X) The tardiness results for the four strategies are displayed in Tables la and 1b. The values

" represent total job tardy hours across all machines. The tardiness results for Strategy 1 illustrate
R

.E the penalties incurred when machine compatibilities are not utilized during rescheduling. When the
“} preschedule is pushed back to accommodate the disruption, only the jobs on the disrupted machine

. are affected. Although this strategy preserves the preschedule sequence and machine assignments.

\ it is limited since jobs may not be offloaded to compatible machines.

) In Strategy 2, among the three selection rules tested, EDD, MDD and LWS, the LWS rule
:n had the lowest average tardiness, however, it did not significantly outperform the others. The
o tardiness comparison between Strategy 2 and Strategy 3 is mixed. The partial look ahead approach
f, performed better on the Facility 1 problems but markedly worse on the Facility 2 problems. This is
{ ; due to MCIP’s difficulty, without the preschedule assignments, in finding a feasible schedule across
'. the many machines of Facility 2.

"’a‘_ Strategy 4 yielded the least tardiness for both facilities among all strategies. By including the
;:.:: preschedule assignments in the MCIP formulation, the model switched job/machine assignments
_‘ only as needed to correct for the disruption. The preschedule assignments then served as a good
i , completion to the solution schedule.
: The appropriateness of a rescheduling strategy must also consider machine assignment changes
E :3, and computation times. Table 2 displays the number of job/machine assignment changes for
g Strategies 2, 3 and 4. Since the simple preschedule pushback approach of Strategy 1 does not
I'n move jobs across machines, no values are given. For the Facility 1 problems, Strategy 2 yielded a
p ! significantly higher number of job changes than Strategies 3 or 4. This is to be expected since the
-1 reassignment heuristic does not attempt to maintain original assignments as the MCIP does. All

¢ three strategies had few job/machine changes for the facility 2 data since many jobs had only one

_: compatible machine.

| Table 2 also displays the computation times for Strategies 2, 3 and 4. The time for Strategy

[ 1 was negligible and, hence, omitted. The Strategy 2 heuristic has the advantage of being verv
. fast when compared to the MCIP run times of Strategies 3 and 4. The latter strategies require
: 2 the solution of MCIP’s with up to 225 variables and several hundred constraints. As the number

- of lots increases, the CPU times for strategies 1 and 2 can be expected to increase approximately
’_ linearly while those of strategies 3 and 4 can be expected to increase more sharply.

';:: ' Table 2 includes the final RELAX values for Strategies 3 and 4. This represents the amonuut
E: of job overlap that had to be allowed before a feasible integer solution could be found by the MC'IP.
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' The Strategy 3 RELAX averages are higher than those of Strategy 4 indicating greater difficulty

K ::j in finding a feasible solution. The direction from prescheduling assignments not only resulted in
:}_f lower RELAX values, but also lower average run time.

f -

2 : . . . .
) The next set of comparisons evaluates the matchup scheduling using the MCIP solution relative
)

. to the priority rule reassignment. The priority rule heuristic was run with each of its five rules.
& ) The resulting schedules were then evaluated with respect to lot tardiness and the minimum tardy
’n schedule was chosen. The single machine resequencer was applied to the chosen schedule to evaluate
ki and improve the job tardiness. This approach was compared to Strategy 4 which used the MCIP
" N for lot reassignment. Table 3 displays the results of the comparison.

B #l

» } For the heuristic selection rule choice, the results show a fairly even distribution among the
SN

;'..! five rules tested and, on several problems, identical lot schedules among some of the rules. In
} terms of mean tardiness, the MCIP approach displays a slight edge over the heuristic. This
B

:}’.‘_ difference arises from several problems in which the heuristic performed quite poorly compared to
\ ::} ' the MCIP approach because of the myopic versus look ahead characteristics of the two approaches.
LN
( . The average number of machine changes also favors the MCIP, especially among the Facility 1
O problems. The heuristic, however, displays much lower CPU times than the MCIP.

Y

K

¥ ..J .

La 6. Conclusions

R

j This paper presents a framework for scheduling production facilities when disruptions inval-
‘::i:'. idate preplanned schedules. It is shown that if disruptions are sufficiently spaced over time, that
KX}

*j the optimal rescheduling strategy is to match up with the preschedule. Heuristics are designed
N . .. . .

3::,2,_ to implement this philosophy for problems with multiple resources, setups and release dates. The
A..‘ methods were tested on a practical set of test problems from an automobile manufacturer. The
b

_‘(:j results showed that the matchup scheduling approach provided significantly better results than
;' the pure static and dynamic strategies. The experiments also indicated that the MCIP integer
> programming solution to the allocation problem may be useful when utilizations are high.
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APPENDIX

Theorem 1: If z* is optimal in (P) and any of the following hold,

(a) (interiority) z¢ € ri(Xo) (r2is relative interior) and int(X,NY;) # 0 relative to aff(X,UY;):

or,
(b) (slack time) for any ¢, z, € X,NY; there exists {z¢41,...}, F'(z¢) =inf 300, frlzr 2,0y T
t such that the common resource groups required for any set of parts are idle at T or
(c) (asymptotic penalty free schedule) for any t,z, € X;NY,, there exists T > ¢, {z},zl,,....}
such that fo(ze, Thyy) + L1, fr(zh, 2hyy) < 00, fr(z},z}4) =0forall 7 2 T;or
(d) (decreasing fixed matchup cost) there exists a feasible solution to P, z’' = {z,,z},,....}

such that for any t,z, € X NY, Tk, K =1.2,..., Tk < Tk+1, such that
Tx-1
Z f(-rrvrr+1) + fo(xTxvxfrx‘l-l) < o0

r=t
a'nd 1iIn}\'—0oc fo(xTxv'rfTK-}]) = Oy
then there exists p§,t = 0,1,... such that
(i) F{z?) - piz; < FYz¢) —pizeforall z, € X\t =1,2,...

(i) folzg,Toyy) —PETt +Prp1Tier < filZe, Tee1) —PiTe+ Py Tes, for all (24, 1441 ) such that
ft(Ze,2e41) S 00.

Proof: McKenzie [Lemma 1, 1976] proves the result given (a). This condition may not hold.

however, in the scheduling context for zo € X, and the interiority of X, N Y; may, indeed. be

difficult to verify. The other conditions are reasonable assumptions that may be more readilv

verified. We show that each implies (i) and use (i) and the structure of f, to show (ii).

Condition (b) implies that there is sufficient slack in the schedule for all resources for common
parts to be free eventually. This condition should hold for all but heavily loaded systems. Note
that the objective in (P) is completely separable among sets of parts sharing common resources so
we can assume without loss of generality that all parts have a common resource and all resources

are eventually simultaneously idle. We wish to show that F*(:,) is subdifferentiable at r,.

Consider r¢ € X N Y, FY(z,) = Z:c,,f,(x,,rrﬂ) and z} = . + é. The idleness property
implies that there exists a feasible schedule, ], such that " = rj and z} = r,.7 > T. We

claim there exists an optimal schedule from r, among z/,7 > T, i.e., there exists {ry,,....} such

ro!
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R¢) that F(z}) = Yoo, fr(h 2hs1)s Ty = .7 > T, for all ||6]| < ¢ and some ¢ > 0. Suppose
g not, then there exists some processing after T in r, that can be moved before T to reduce cost
4
i ) or processing before T in z, that can be moved after T to reduce cost. In either case. the same
\ . . . P .
ﬁ: change in processing can be moved to T with reduced cost by the structure of f,. This implies
) )' that {z,,7 >t} is not optimal, a contradiction.
¥
; S From the above, only a finite number of states z, are changed in an optimal path from r, to an
ot
o)
~ optimal path from zj. Since f; has bounded slope, there exists K < (T —t) " max{w,.u,} < x
\ b t | % =1
L4 . . . . . .
W such that F(z}) > Fi(z,) — K||z; — z:||. Hence, F; is subdifferentiable at z(, proving (i}.
ay A similar argument is used if (c) holds by noting that only a finite number of costs are rediuced
:.'; in an optimal path from r} from an optimal path from z,. This again implies subdifferentiability.
o
N :3 Condition (d) can be interpreted as a generalization of (c), in which, a finite cost path is
o , :
¥ eventually ootainable from every feasible path at decreasing cost. Note that Ef;:l flre 2esr) +
\ :'-:'.: ST (2T . 2%, 41) has a finite number of terms with bounded slope and is hence subdifferentiable.
Y Hence, there exists p/* such that
~
] A Tx -1
ot Y fr o) + fre @y g sn) — PE 20
Y r=¢t
e Tx =1
' E f(z,274,) +fo(I'T'KvIZI'K+1)—P{‘I;’~ e
J r=t¢
7
"l for all z{ € X, . Rewrite (7) as
0] t
P
::"' Tx -1 Tx -1
‘.:":: Pt (l'c —z¢) < Z f(z r+l - Z flze zr1)+
- r=t r=t¢
’.
"::‘- fTK(Ifrl’szirxd-l) '_fo(ITva{I'K+1)‘ 'S
Ay
-(~
" . . e .
-’ Note that |F*(z,)| < o0 and |F*(z!)| < co. Hence pX has a limit point. p;. and by (d}
» ..
-— |
N !
-‘f p(ze — 27) < F(zY) - F'(x0). R
.‘
[\ ,*‘
(L
R for all 2% € X,.
c" » r
— Note that
::' F'—l(3¢—1)=inlf{fl—l(-rt-hr’t)+Ft(-r;)}
» z; 0
E:; ‘ = fi-1(z-1,20) + F'(zy).
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Consider the function, g(z}) defined by
9(ze) = feorlziy, 20) + Fl(x{) - pioy 23—y
~ fe=r(Zpoya 2) + Pio1 Ty (11

< F'(z),

for any (r}_,,z}) such that f,_;(z}_,,r}) < o0 and note that g is also subdifferentiable for r} € };.
YTy Ty t—11T¢ t

Hence, there exists p; such that
9(z}) - prxy < g(zY) — pizy < F'(zY) - Py, (12}
for all 2 € X, NY,. Now, let z{ = z{, and p| = p{ to obtain
ferlzionnxd) = PiaTioy = fma(Teo1n T + pe-aTioy - piT S -piE (13)
for all (z}_,,z}) feasible, proving (ii).m

Theorem 2: Let z* be optimal for (P) with initial condition zg, price support p* and facets Z;
defined as above. Let z’ be optimal in (P) with initial condition zj and price supports p’. Then.

for any € > 0, there exists T < oo, such that, for all t > T,

. Ze Tear) = (Fuzem)]| < € (14
telte «

Proof: Let z’' have supporting prices p’. From (ii) of Theorem 1, we have for any z; € Z;,

Pe(ze — 20) = Pesr(Teey — Ze) S fl(-f'u"u-l) = fulzg,204)

(15)
< Pe(xe = 28) = Pear(Tean — Z0nr)-
Let ve(z7) = (pf - pi)(zy — 2¢) . Inequality (15) implies that
ve(24y) < verrl(zy) (16;
for all t and any (z{,z7,,) € Z¢. By summing inequalities (ii), for all T,
T
PT+1(TT4) — TT41) 2 Z(fl(-tc.~1':+1) ~ flze 2es1)) — Po(z0 — To), (T
t=0
and
T
Pray(Trey = Tran) 2 ) (Sl Tiyy) = filzd,zi41)) - Po(zg = Zo). BRY
t=0
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From the finiteness of Fo(z')and F%(z*), both right hand sides in (17) and (18) are uniformly

bounded for all T. Hence, we can assume
N, v(zy) 2 K > —oo0, (19

for all t and zj.

p Now. if (14) does not hold, then, for all T, there exists some T > T such that
A
%
‘ inf I, - | >e (20
(z;.zz.\)GZ,‘ ” ¢ ‘” -
:; By boundedness, let the infinium in (18) be attained at z*. Then. by the structure of f,.t = T".
e
:::n felzd,2001) = PLad + Pierien
DU
o S flzpTip) — PiTe + PrrZesr — Y 204) — (2o e )] (21
s'
E’ where v > min(w,,u;) > 0. By definition of Z¢, for any (z7,z7,,)
)‘ - L] - L ] L] L] . L ) - L ] L] L] Y
o felzy i) —pizy + Piv1Zesr = fulzg  2041) — Prze + Pesr Zee 12l
?'.
-: From (21) and (22), we have for any T,
N Y fdziizin) = Y fulzh T
) t=0 (=0
N
A [ ] » I 0y
-::: _<.(Po '_plo)(z:)—-to) (PT PT) IT—IT 27”(0(\"”.1/ It "(+1 g i23
,:~ t=0
- By (19}, if (14) does not hold. then the right-hand side of (23) approaches —x as T approaches
" >c. This contradicts the finiteness of Fo(z')®
*at,
A
{: Theorem 3: Assume in Problem (P) that u, = 0 for all 1 and that r* is an optimal solution
¥
given r3. Let z5 < ry be an alternative initial state. If there exists a feasible solution r ~uch rthat
;:: Fo = ry and ¥, = z; for some t < 20, then there exists an optimal solution r’ with initial condition
n .
::.. ry such that ry = r;.
e
:: Proof: First construct a feasible solution r such that
(1) Z,() =1 () if £%(2) < 23(2),
(1) 2403} - Z,0(2) 2 23(7) = 23_,(y) for all ; sharing resources with ¢ if =t > »1r and
() - 2h_(1) > 0.
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! A solution satisfving (i) and (ii) satisfies , < r},7 = 1,2,....1, since no processing is made

o beyond r}(t) for each i. The feasibility of a path from rf to z¢ only requires 3°7_ (zq(2) - r{(2};
:v': available capacity units on the resources required by those parts. This processing can be cornpleted
::.' anywhere in [0,t] such that z¢ > rj implies r(z) < 0 for all ¢ such that zo(7) < ry(:) and no other
" resource constraints are present. Therefore, I satisfying (i) and (ii) can be extended to satisfv
}‘ Iy=zfand F, =25, 7=0,1,...,L
e

‘:.: Suppose 7 # r’ for any r' optimal given r;. Then, there exists a sequence Ar = (Arq =

: 0,Ar;,Azxy,...) such that ' = 2+ Az and F(Z + Az) < F(Z). We will show that this implies

that there exists a sequence Ar® such that F(z* + Az*) < F(z*). To show this. let F(z'} =

l"

:\.:" Sy Fi(2'(1)), where F, is the contribution to the overall objective value from part :. Suppose

's: F,(z'(2)) < F,(#(z)). Then there exists 7 such that Az,.(z) — Azr,_;(z) > 0. For each such 7. note

)

Ko that £,(2) = z2(2), so r2(1) + Ar.(¢) = #,(¢) + Az,(z) and
<
:',','_ Fi(2(2) + Az(2)) — Fi(2(2)) = Fi(2*(1) + Az (2)) = Fy(z"(2)}, (24
=
'-‘ where Az*(1) = Az(2).

‘et ’ In order for () + Az(i) to be feasible, however, there must exist Az, (j) — Sz, —;(;) <0 for
:::‘-_ parts j requiring common resources with :. For each such j, we can define Ar* recursively from
:';: r=1by
o -

') Ar;(7) ~Az;_1(J) = min{r;()) —z;_(;),dz3(s) - dr;_ ()} 125
?®
"~ By (i1), this ensures the feasibility of z* + Ax(:) + E,e](.)Az‘(f)~ where .J(1) = {set of parts
,.
:-' sharing resources with :}. For each j € J(1), note that
.

Fy(2(j)) - F(2) + dz()) = Y. w,Az.())
: {rl2.(1)<0)
‘f

v (F.05) ) 0. 26

! + Z w,(2,0)+ Az () + ) ) b
\-"r {ri2.(1)20.2,(;)+AQ2,(,)<0) {ri2«())20.2e(7)+A2,05120})

- Since z, < r} and Ar) < Ar,. from (26).

vl': Fy(z(3)) - Fjix(p)+ Az S Fy(r*iy) - Fy(oe* (g + Aty 2T
e

Construct Ar® using this procedure for each 1 such that F,(r'(2)) < Fi(7(2'}. It follows from

-" (243, (26, and (27} that

F(z* + Ar®) - F(z*)
“. ‘)0

o 2

‘:‘.: g 2
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= Z Fiy(z* (1) + Az*(7)) - Fi(e*(4)) + Z Fz*(j)+Az°(j)) - B0
I={i{|\Fi(a' ()< Fi(2(1)) {j€J(3) €T}

<Y R@G))-REO)+ Y. F(G)) - F(E;) <0 (25,
I

{J€J() s€1}

"5 2 & &

but this contradicts the optimality of z*. Hence, z = z' for some optimal z'.®
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